103 research outputs found

    Low thrust propulsion in a coplanar circular restricted four body problem

    Get PDF
    This paper formulates a circular restricted four body problem (CRFBP), where the three primaries are set in the stable Lagrangian equilateral triangle configuration and the fourth body is massless. The analysis of this autonomous coplanar CRFBP is undertaken, which identies eight natural equilibria; four of which are close to the smaller body, two stable and two unstable, when considering the primaries to be the Sun and two smaller bodies of the solar system. Following this, the model incorporates `near term' low-thrust propulsion capabilities to generate surfaces of articial equilibrium points close to the smaller primary, both in and out of the plane containing the celestial bodies. A stability analysis of these points is carried out and a stable subset of them is identied. Throughout the analysis the Sun-Jupiter-Asteroid-Spacecraft system is used, for conceivable masses of a hypothetical asteroid set at the libration point L4. It is shown that eight bounded orbits exist, which can be maintained with a constant thrust less than 1:5 10􀀀4N for a 1000kg spacecraft. This illustrates that, by exploiting low-thrust technologies, it would be possible to maintain an observation point more than 66% closer to the asteroid than that of a stable natural equilibrium point. The analysis then focusses on a major Jupiter Trojan: the 624-Hektor asteroid. The thrust required to enable close asteroid observation is determined in the simplied CRFBP model. Finally, a numerical simulation of the real Sun-Jupiter-624 Hektor-Spacecraft is undertaken, which tests the validity of the stability analysis of the simplied model

    Specification of the near-Earth space environment with SHIELDS

    Get PDF
    Predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- and micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design

    Mucosal Expression of Type 2 and Type 17 Immune Response Genes Distinguishes Ulcerative Colitis From Colon-Only Crohn's Disease in Treatment-Naive Pediatric Patients

    Get PDF
    Background & Aims There is controversy regarding the role of the type 2 immune response in the pathogenesis of ulcerative colitis (UC)?few data are available from treatment-naive patients. We investigated whether genes associated with a type 2 immune response in the intestinal mucosa are up-regulated in treatment-naive pediatric patients with UC compared with patients with Crohn's disease (CD)-associated colitis or without inflammatory bowel disease (IBD), and whether expression levels are associated with clinical outcomes. Methods We used a real-time reverse-transcription quantitative polymerase chain reaction array to analyze messenger RNA (mRNA) expression patterns in rectal mucosal samples from 138 treatment-naive pediatric patients with IBD and macroscopic rectal disease, as well as those from 49 children without IBD (controls), enrolled in a multicenter prospective observational study from 2008 to 2012. Results were validated in real-time reverse-transcription quantitative polymerase chain reaction analyses of rectal RNA from an independent cohort of 34 pediatric patients with IBD and macroscopic rectal disease and 17 controls from Cincinnati Children's Hospital Medical Center. Results We measured significant increases in mRNAs associated with a type 2 immune response (interleukin [IL]5 gene, IL13, and IL13RA2) and a type 17 immune response (IL17A and IL23) in mucosal samples from patients with UC compared with patients with colon-only CD. In a regression model, increased expression of IL5 and IL17A mRNAs distinguished patients with UC from patients with colon-only CD (P =.001; area under the receiver operating characteristic curve, 0.72). We identified a gene expression pattern in rectal tissues of patients with UC, characterized by detection of IL13 mRNA, that predicted clinical response to therapy after 6 months (odds ratio [OR], 6.469; 95% confidence interval [CI], 1.553?26.94), clinical response after 12 months (OR, 6.125; 95% CI, 1.330?28.22), and remission after 12 months (OR, 5.333; 95% CI, 1.132?25.12). Conclusions In an analysis of rectal tissues from treatment-naive pediatric patients with IBD, we observed activation of a type 2 immune response during the early course of UC. We were able to distinguish patients with UC from those with colon-only CD based on increased mucosal expression of genes that mediate type 2 and type 17 immune responses. Increased expression at diagnosis of genes that mediate a type 2 immune response is associated with response to therapy and remission in pediatric patients with UC

    Serologic Reactivity Reflects Clinical Expression of Ulcerative Colitis in Children

    Get PDF
    Background In contrast to pediatric Crohn's disease (CD), little is known in pediatric ulcerative colitis (UC) about the relationship between disease phenotype and serologic reactivity to microbial and other antigens. Aim The aim of this study was to examine disease phenotype and serology in a well-characterized inception cohort of children newly diagnosed with UC during the PROTECT Study (Predicting Response to Standardized Pediatric Colitis Therapy). Methods Patients were recruited from 29 participating centers. Demographic, clinical, laboratory, and serologic (pANCA, ASCA IgA/IgG, Anti-CBir1, and Anti-OmpC) data were obtained from children 4-17 years old with UC. Results Sixty-five percent of the patients had positive serology for pANCA, with 62% less than 12 years old and 66% 12 years old or older. Perinuclear anti-neutrophil cytoplasmic antibodies did not correspond to a specific phenotype though pANCA ò100, found in 19%, was strongly associated with pancolitis (P = 0.003). Anti-CBir1 was positive in 19% and more common in younger children with 32% less than 12 years old as compared with 14% 12 years old or older (P < 0.001). No association was found in any age group between pANCA and Anti-CBir1. Relative rectal sparing was more common in +CBir1, 16% versus 7% (P = 0.02). Calprotectin was lower in Anti-CBir1+ (Median [IQR] 1495 mcg/g [973-3333] vs 2648 mcg/g [1343-4038]; P = 0.04). Vitamin D 25-OH sufficiency was associated with Anti-CBir1+ (P = 0.0009). Conclusions The frequency of pANCA in children was consistent with adult observations. High titer pANCA was associated with more extensive disease, supporting the idea that the magnitude of immune reactivity may reflect disease severity. Anti-CBir1+ was more common in younger ages, suggesting host-microbial interactions may differ by patient age

    Variation in care in the management of children with Crohn's disease: Data from a multicenter inception cohort study

    Get PDF
    Background: Variation in care is common in medical practice. Reducing variation in care is shown to improve quality and increase favorable outcomes in chronic diseases. We sought to identify factors associated with variation in care in children with newly diagnosed Crohn's disease (CD). Methods: Prospectively collected data from a 28-site multicenter inception CD cohort were analyzed for variations in diagnostic modalities, treatment, and follow-up monitoring practices, along with complicated disease outcomes over 3 years in 1046 children. Generalized linear mixed effects models were used to investigate the intercenter variations in each outcome variable. Results: The mean age at diagnosis was 12 years, and 25.9% were nonwhite. The number of participants ranged from 5 to 112 per site. No variation existed in the initial diagnostic approach. When medication exposure was analyzed, steroid exposure varied from 28.6% to 96.9% (P 0.99). Use of immunomodulators (IMs) varied among centers both within 90 days (P < 0.01) and during 3 years of follow-up (P < 0.01). A significant variation was seen at the geographic level with follow-up small bowel imaging and colonoscopy surveillance after initial therapy. Conclusions: Intercenter variation in care was seen with the initial use of steroids and anti-TNF, but there was no difference in total 3-year exposure to these drugs. Variation in the initiation and long-term use of IMs was significant among sites, but further research with objective measures is needed to explain this variation of care. Small bowel imaging or repeat colonoscopy in CD patients was not uniformly performed across sites. As our data show the widespread existence of variation in care and disease monitoring at geographic levels among pediatric CD patients, future implementation of various practice strategies may help reduce the variation in care

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Overview of the JET results in support to ITER

    Get PDF
    corecore